Two- and Three-Dimensional Poisson-Nernst-Planck Simulations of Current Flow Through Gramicidin A

نویسندگان

  • Uwe Hollerbach
  • Duan-Pin Chen
  • Robert S. Eisenberg
چکیده

We simulate sodium chloride currents through the gramicidin A channel using the spectral element method to solve the three-dimensional Poisson–Nernst– Planck (PNP) equations. Using the spectral element method, we are able to simulate the entire channel, plus large enough portions of the lipid bilayer and baths to ensure that all boundary conditions are realistic. In these simulations, we rely on the 3D charge distribution of the gramicidin molecule plus diffusion coefficients and dielectric coefficients. Our main results, which match the experimental data, are current-voltage (IV) curves for gramicidin at various concentrations of NaCl in the surrounding baths. We give a detailed description of the numerical algorithms used to solve the PNP equations, and we present various sensitivity analyses which we have performed to determine which parameters of the model most affect the IV curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.

A recently introduced real-space lattice methodology for solving the three-dimensional Poisson-Nernst-Planck equations is used to compute current-voltage relations for ion permeation through the gramicidin A ion channel embedded in membranes characterized by surface dipoles and/or surface charge. Comparisons to a variety of experimental results, presented herein, have proven largely successful....

متن کامل

A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.

A lattice relaxation algorithm is developed to solve the Poisson-Nernst-Planck (PNP) equations for ion transport through arbitrary three-dimensional volumes. Calculations of systems characterized by simple parallel plate and cylindrical pore geometries are presented in order to calibrate the accuracy of the method. A study of ion transport through gramicidin A dimer is carried out within this P...

متن کامل

Poisson-Nernst-Planck systems for narrow tubular-like membrane channels

We study global asymptotic behavior of Poisson-Nernst-Planck (PNP) systems for flow of two ion species through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previously studied one-dimensional PNP ...

متن کامل

Stabilized finite element methods to simulate the conductances of ion channels

We have previously developed a finite element simulator, ichannel, to simulate ion transport through three-dimensional ion channel systems via solving the Poisson–Nernst–Planck equations (PNP) and Sizemodified Poisson–Nernst–Planck equations (SMPNP), and succeeded in simulating some ion channel systems. However, the iterative solution between the coupled Poisson equation and the Nernst–Planck e...

متن کامل

Solutions to a nonlinear Poisson-Nernst-Planck system in an ionic channel

A limiting one-dimensional Poisson-Nernst-Planck (PNP) equations is considered, when the three-dimensional domain shrinks to a line segment, to describe the flows of positively and negatively charged ions through open ion channel. The new model comprises the usual drift diffusion terms and takes into account for each phase, the bulk velocity defined by (4) including the water bath for ions (see...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2001